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Abstract. Arguing that total consumer wealth is unobservable, we invert the (approximate) con-
sumption function to reconstruct, in a world with Kreps-Porteus generalized isoelastic preferences,
(i) the wealth that supports the agents’ observed consumption as an optimal outcome and (ii) the
rate of return on the consumers’ wealth portfolio. This allows us to (approximately) price assets
solely as a function of their payoffs and of consumption—in both homoskedastic or heteroskedastic
environments. We compare implied equilibrium returns on the wealth portfolio to observed stock
market returns and gauge whether the stock market is a good proxy for unobserved aggregate wealth.
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1. Introduction

This paper is motivated by two observations. The first one is empirical. According
to Gutter (2000), non-human wealth represented less than 60% of total household
wealth in the United States in 1998. Moreover, financial assets amounted at the
same date, at market value, to only 19% of total household wealth. The Survey of
Consumer Finances shows that, in that same year, direct stock holdings represented
only 21% of total financial assets. Including mutual fund shares and life insurance,
this proportion only climbs to slightly more than 40% of total financial assets or 8%
of total household wealth. Even if one excludes human capital and inside financial
assets (such as banks’ deposits and public debt), there is therefore much more to
consumer wealth than stocks and much more to the rate of return on wealth than
the rate of return on the stock market. The rate of return on the stock market—the
measure of the rate of return on wealth used by most of the capital asset pricing
literature—can only be an imperfect proxy for the rate of return on wealth.

The second observation pertains to theory. Many authors seem to have forgot-
ten that two of the main contenders in the search for the explanation of excess
returns—the static (or market) capital asset pricing model (SCAPM) and the con-
sumption capital asset pricing model (CCAPM)—are not independent and unre-
lated models. Regardless of the view one takes on the exact degree of rationality of

* We are grateful to Rosa Rodriguez for help with data and estimations. The first version of this
paper was written in 1993.
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2 FERNANDO RESTOY AND PHILIPPE WEIL

consumers, the length of their economic lifetime or the completeness of markets,
there must be some link between asset returns and consumption, between prices
and quantities. In the simplest case that we will explore in this paper—the complete
markets, representative agent framework—this link has a name: the consumption
function. The reason for the neglect of the consumption function and the almost
exclusive focus on first-order conditions is obvious: it is difficult to solve for the
consumption function in interesting problems. But technical difficulties are no valid
reason for sticking with Euler equations and for neglecting the link between the
two measures of risk represented by the covariance of asset returns with the wealth
return or with consumption.

In this paper, we attempt to take these two remarks seriously. We develop an
equilibrium capital asset pricing model based on Kreps-Porteus preferences—as
exposed in Weil (1990), Epstein and Zin (1989) and Giovannini and Weil (1989)—in
which the marginal rate of substitution depends both on the rate of growth of
consumption and on the rate of return on wealth. But, contrary to previous authors
with the glaring exception of Campbell (1993), we make explicit (albeit through
log-linear approximations) the links between consumption and wealth returns to
characterize equilibrium excess returns.

Although our paper conforms to Campbell’s philosophy—we go beyond Euler
equations by using the information contained in the consumption function—it
takes a different perspective on the goals to be achieved. Campbell’s objective is
to use the consumption function to eliminate consumption from his asset pricing
expressions, or, as he puts it, to compute asset prices “without consumption data”.
His rationale is that aggregate per capita consumption of non-durables and services
(i) is a poor measure for the consumption of market participants, and (ii) is subject
to measurement and time-aggregation errors. As a result, he derives expressions
for excess returns that look like a generalized version of the market CAPM.

Our view, suggested at the outset, is that, from a data perspective, the difficulties
involved with measuring the rate of return on wealth are as large as, if not larger
than, those involved with measuring the consumption of market participants:! the
rate of return on total wealth is not simply mismeasured, it is not measured at
all. Reversing Campbell’s method, we observe that consumer’s total wealth can be
reconstructed from consumption data alone under the maintained assumption that
the consumption data that we observe were generated by (Kreps-Porteus) utility
maximizing agents. From these reconstructed total wealth data, we can compute an
implied series of rates of return on total consumer wealth—which again is solely a

! In another paper, Campbell (1996) attempts to circumvent the absence of data on the rate of return
on human wealth by assuming that human wealth is constant fraction of total wealth, and that its
return can be approximated by a linear function of labor income growth. Since human wealth is not
the only component of wealth for which no data are available, those strong assumptions can hardly
solve completely the data difficulties that motivate us.
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function of consumption data. These reconstructed wealth returns can then be used
to calculate an (approximate) pricing kernel which, because it is in turn also solely
a function of consumption data, yields a generalized consumption CAPM.

What we are doing can thus be thought as stripping the asset pricing methods
of Lucas (1978) or Mehra and Prescott (1985) from their general equilibrium
interpretation and from the “fruit tree” imagery: we take consumption as given, and
we infer back from budget constraints and first-order conditions the wealth and the
asset prices that support observed consumption as a utility-maximizing outcome.
The (approximate) asset pricing kernel that we compute enables us to price any
asset (including wealth) and determine its stochastic equilibrium returns solely as
a function of its payoff and of observed consumption. This procedure allows us
to price the stock market as a subset of wealth, and to compare empirically the
implications of the model for stock market returns with the ones on the wealth
portfolio.

The paper is organized as follows. We present the model, and the basics of our re-
construction of wealth from observed consumption data, in section 2. We then turn,
in section 3, to the determination of asset prices in a world with a homoskedastic
consumption process, postponing to section 4 the analysis of equilibrium with het-
eroskedastic consumption. In section 5, we examine the implications of our model
for the term structure of real interest rates. In section 6, we compute the predicted
equilibrium returns on the wealth portfolio and compare them with stock market
returns. In that section, we also review other empirical papers that make use of our
approximate equilibrium asset pricing approach. The conclusion offers directions
for future research.

2. The Model

The economy consists of many identical infinitely-lived consumers. All wealth is
assumed to be tradeable. Let W, denote wealth at time #, and R,, ; the rate of return
on the “wealth portfolio” between dates + — 1 and ¢. Wealth can be accumulated
in many forms, among which money, stocks, bonds, real estate, physical and human
capital. The rate of return on wealth will be, in equilibrium, the rate of return on
this exhaustive “market portfolio.”

A representative consumer faces the following budget constraint:

Wit1 = Ry i1(Wy — Cy). (2.1)

In addition, our consumer’s initial wealth is given, and she faces a solvency con-
straint to rule out Ponzi games.

Following Epstein and Zin (1989) and Weil (1990), we assume that consumers
have Kreps-Porteus generalized isoelastic preferences (GIP) with a constant elas-
ticity of substitution, 1/p, and a constant (but in general unrelated) coefficient of
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relative risk aversion, y, for timeless gambles. These preferences can be represented
recursively as

V, = {1 =B)C " +B(E Vi)' ), 2.2)

where 0 < < 1, V; is the agent’s utility at time ¢, C; denotes consumption, the
operator E; denotes mathematical expectation conditional on information available
at ¢, and the parameter

6=01-v)/(1-p)

measures the departure of the agents’ preferences away from the time-additive
isoelastic expected utility framework. Thus, when 6 = 1, the preferences in (2.2)
reduce to the standard time-additive isoelastic expected utility representation.

2.1 THE EULER EQUATION

Epstein and Zin (1989) have shown that for any asset with gross rate of return R; ;41
between dates ¢ and ¢ 4 1 the following Euler equation must be satisfied:

o [Cr1 1™ oy
E B | —— Rw,t_,_lRi,t—i-l =1 (2.3)

By log-linearizing (2.3) and subtracting from it the version of the Euler equation
that holds for a safe one-period bond with gross rate of return R 7,41, we obtain the
familiar’ expression for the (approximate) excess return on any asset:
Oii,t
Eirigr1 — 11 = 5 + 000ic,r + (1 — 0)0iw.s» 2.4

where lowercase letters denote the logarithm of their uppercase counterpart, and
where o, ; denotes the conditional covariance at time # between random variables
pr+1and gy

This equation is often interpreted® as implying that, for GIP preferences, excess
returns are determined by a combination of the CCAPM and of the SCAPM. This
is misleading, since consumption and the return on wealth (or o;.; and o0y ) in
general depend on each other, through the behavior of forward-looking, optimizing
consumers who must satisfy the budget constraint (2.1).

2 See, for instance, Giovannini and Weil (1989).
3 See, for instance, Epstein and Zin (1989) or Giovannini and Weil (1989).
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2.2 THE (APPROXIMATE) RELATION BETWEEN CONSUMPTION AND ASSET RETURNS

Taking, as in Campbell (1994), a first-order Taylor expansion around the uncon-
ditional mean of the logarithm of the consumption-wealth ratio,* we obtain the
following approximate log-linear budget constraint:

1

Fw,t+1 = Xpp] — eyl + gat —k (2.5)

where x; = log %, a; = log % and kand 8 (0 < § < 1) are two easily computed

t

linearization constants.’ Equation (2.5) implies that

Sz+1”w,z+1 = St+1(xt+1 - at+1)- (2-6)

where, for any random variable g, 1, the surprise operator S is defined as

Sit19+1 = Eiv1 9141 — Erqev1 = gr41 — Er qryr.

An implication of (2.6) is that, if the budget constraint is satisfied, the conditional
covariance of any asset return with the rate of return on wealth is just the difference
between, on the one hand, the conditional covariance of this asset’s return with
consumption and, on the other hand, the conditional covariance of this asset’s return
with the (log) propensity to consume. Namely,

Oiw,t = Ojc,t — Oiayt- (27)

While this equation is not operational (we have not yet said anything about o;, /),
it has the merit of pointing out that the covariance between individual returns
and the return on the wealth portfolio is endogenous, through its dependence on the
covariance o;, ; between individual returns and the still to be computed endogenous
propensity to consume.

2.3 ELIMINATING THE RATE OF RETURN ON WEALTH

Since our goal in this paper is to derive asset pricing expressions that do not involve
the unobservable rate of return on the wealth portfolio, we can use equation (2.7) to
eliminate the terms involving the rate of return on wealth from the excess returns

* Throughout, we assume stationarity. The assumption that log consumption-wealth ratio is stationary
is validated in equilibrium.

5 The constant 3 is equal to 1 — exp[E(a)], and the constant k is equal to log(8/1 — 8) + (1/3)E(a).
Campbell (1993) examines the accuracy of this log-linear approximation, which depends on the
variability of the consumption-wealth ratio in a model mathematically identical to ours but in which
asset returns, instead of consumption, are treated as exogenous data. To the extent that consumption
is less volatile than asset returns, our approximations are at least as good as those in Campbell (1993).
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expression (2.4):°

Oii,
Eirity1 —rp1 = _sz + Y0ic + (0 — Doias- (2.8)

Equation (2.8) highlights two important special cases that are explored systemati-
cally in Giovannini and Weil (1989):

* in the expected utility case (6 = 1), equation (2.8) is the excess return equa-
tion characteristic of the CCAPM.

e when the consumption-wealth ratio is constant (a; = a for all t), equation
(2.8) implies that asset returns must also conform to the CCAPM, but that
model should then be equivalent to the SCAPM, since consumption growth
and the rate of return on wealth are then perfectly correlated.’

2.4 THE CONSUMPTION-WEALTH RATIO

The expression for excess returns in (2.8) is still non-operational, as the extra-term
introduced by GIP preferences, o;,;, depends on the propensity to consume that
we have not yet calculated. We now take up the task of characterizing the optimal
consumption-wealth ratio.

From the version of the Euler equation (2.3) that holds for the wealth return, it
follows that, when 6 # 0,

0
Eirpip1 = — logB + pE; x/41 — Evart(rw,t+l — PXt41) (2.9)

Now, using (2.5), and solving for a; in (2.9) we find

0
a;~3 (k_ log B+E;[a;+1—(1 —p)x,H]—iVart [a;41 — (1 — p)xz+l]> . (2.10)

Consistent with our approach that seeks to express all variables in terms of
consumption, we interpret (2.10) as a difference equation in the a’s driven by the
x’s. Under the transversality condition lim,_, o 8°a;4s = 0,% (2.10) implies that

_ Ok —logP)

o.¢] x
; 0 .
t = 1 _6 (1 - p)E[ E Bjxt+j - EEt E B]Vart+j_1Z[+j, (211)
i—1 i—1

where

z=a; — (1 —p)x;. (2.12)

® Tt is at this point that we depart from Campbell (1993).

7 See, for instance, the budget constraint (2.5).

8 This transversality condition, which is also used by is also used by Campbell (1993), is part of the
necessary conditions for optimality. It rules out bubbles in this Ramsey-type economy.
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Two remarks are in order. First, (2.11) still does not provide the solution for the
consumption wealth ratio @, as a function of consumption and preferences, since
conditional first moments of future conditional second moments appear on the right-
hand side. But as we shall see below, (2.11) does provide a clue as to the functional
form of the solution. Second, uniqueness of the solution (when the solution exists)
is guaranteed by the fact that the transversality condition, the Euler equation and
the budget constraint (all of which are imbedded in (2.11)) are jointly necessary
and sufficient for a unique solution to the optimal consumption problem we are
approximating.

We are now ready to turn to the determination of equilibrium returns. We examine
two cases in the next two sections. First, a case in which log consumption growth is
conditionally homoskedastic. Second, a case in which consumption is conditionally
heteroskedastic and follows an AR(1) process with GARCH(1,1) disturbances.

3. Equilibrium Returns: Homoskedastic Consumption

Suppose the log consumption growth and the conditional mean of future log con-
sumption growth are jointly conditionally homoskedastic, so that the conditional
variance of consumption growth, its conditional covariance with future expected
consumption growth and the conditional variance of future expected consumption
growth are constant over time.

3.1 THE PROPENSITY TO CONSUME

When conditional second-order moments are constant, it is straightforward to check
that the solution to (2.11) is simply

o
@ =g—(1—pE Y &xy, 3.D)
j=1

where the constant g is given by
8 (1 — p)?
=—— k-1 -
1—% [ ogp 2

and where o), and o, respectively denote, under the notation

(Oce + Opn + 2cch):| )

oo
hiv1 = Erp Z 8th+j+1s
j=1
the conditional variance of expected discounted future consumption growth, and

the conditional covariance between consumption growth and expected discounted
future consumption growth.
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The interpretation of (3.1) is the following: Given current wealth, high expected
future consumption can only stem from high expected future returns on wealth.
Thus, if the elasticity of intertemporal substitution is large (p < 1)—i.e., if sub-
stitution effects are stronger than income effects—our consumer reacts negatively
to high expected future returns by consuming less, so that the consumption-wealth
ratio declines. If, on the other hand, the elasticity of intertemporal substitution is
small (p > 1), high expected future consumption has a negative impact on the
propensity to consume. Equation (3.1) is the mirror image of these effects given
consumption.

Note that, as a result of (3.1), homoskedasticity of consumption growth and
future expected consumption growth implies homoskedasticity of the consumption
wealth ratio.

3.2 THE RATE OF RETURN ON WEALTH

From (2.5) and (3.1), we can reconstruct the approximate equilibrium rate of return
on the (unobservable) wealth portfolio:

o0
Fwre1 = U+ pxi1 + (1 = p)S;11 Z3jxt+j+1, (3.2)
j=0
where
6(1 — p)?
u=—logf — T(Gcc + onp + 20ch). (3.3)

This equation (3.2) enables us to compute, date by date and state by state, the return
on the wealth portfolio from observable consumption data alone. This equilibrium
rate of return on wealth has to be understood as the return on wealth which supports,
under the assumption that the model is true, the consumption process as an equi-
librium consumption path. In other terms, equation (3.2) allows us to reconstruct
the unobserved return on wealth from observed consumption data.

An implication of equation (3.2) is that:

El‘ w4+l = U + pEl‘ Xit1- (34)

As a consequence, when expected future consumption raises, consumers require
higher expected returns in order to offset their distaste for intertemporal substi-
tution. Moreover, in this homoskedastic world, the magnitude of the increase in
conditional expected return on wealth that is required to compensate an increase in
the conditional expected rate of growth of consumption is exactly the inverse of the
elasticity of intertemporal substitution—i.e, p.
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3.3 THE APPROXIMATE PRICING KERNEL

The expression (3.2) for the implied rate of return of the wealth portfolio enables
us to compute the (approximate) equilibrium pricing kernel for this economy as a
function of the consumption process. From the Euler equation (2.3), it follows that
the log marginal rate of substitution between periods # and ¢ + 1 is

mp1 = 0logB — pOx,1 + (0 — Dry ry1.

Substituting (3.2) into this expression and rearranging, we find that

(00)
Miy1 =V — pXr41 + (0 — V)Si1 Z ijt—i-j-i-l,

j=0
where v = 61Inp + (6 — 1)u. In the standard time and state-additive case (y = p)
and/or in an i.i.d. world (S;41 Zjil 8/ xi4j+1 = 0), the (log) pricing kernel is, up
to a constant, a linear function of the (log) consumption growth rate. In all other
cases, it depends in addition on the news received at time ¢ + 1 about consumption
growth rates in periods ¢ + 2 and beyond.

3.4 EXCESS RETURNS

It follows from equation (3.1) that surprises in the propensity to consume are given
by

o0
Sic1aip1 = —(1 = p)Si1 ) i j, (35)
j=1

so that the conditional covariance between the return on any asset and the marginal
propensity to consume is

Gia = —(1 — p)oin (3.6)

where o;;, denotes the conditional covariance between the return on asset i and
expectations of future (discounted) consumption growth.

Therefore, substituting (3.6) into (2.4), the equilibrium excess return on any asset
satisfies

.
Eitifq1 —rpig1 = —§ + Y0ic + (Y — p)0in. (3.7)

According to this expression, the excess return on any asset depends on its own
variance (a Jensen’s inequality term), on its conditional covariance with contempo-
raneous consumption, and on its conditional covariance with future consumption.
To understand (3.7), it is best to think of time as consisting of three dates: today,
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tomorrow, and the day after tomorrow (or future), and to examine separately the
three terms yo;., yo;n, and —po;j that govern excess returns:

e An asset with o;. > 0 is an asset whose return between today and tomorrow
tends to be high (low) when consumption tomorrow is high (low). Holding
such an asset in one’s portfolio makes it difficult to smooth consumption
over states of nature. Therefore, risk averse investors require a premium over
the riskless return to hold this asset. This premium is larger the larger the
consumers’ aversion to substitution over states of nature, i.e., the larger their
coefficient of relative risk aversion y. The presence of the term yo;. on the
right hand-side of (3.7) thus reflects our consumer’s aversion to substitution
over states of nature.

* An asset with 5;; > 0 is an asset whose return between today and tomorrow
tends to be high (low) when there are good (bad) news about consumption
the day after tomorrow. Such an asset is not attractive, as it provides, say,
more wealth tomorrow when good news about future consumption make it
less desirable to be able to save for precautionary motives.” As a result, our
consumers require a premium to hold this asset, and the term yo;j, reflects
the desire of our consumers’ precautionary saving motive.

e However, an asset with o;;, > 0 is desirable for consumers who dislike fluc-
tuations of consumption across dates, as holding such an asset smoothes
the intertemporal consumption profile. Therefore, the more consumers are
averse to intertemporal substitution (the larger p), the more willing they are
to hold an asset with o;;, > 0, and the smaller the excess return required in
equilibrium to induce consumers to hold this asset. This explains the presence
of the —po;; term, which reflects our consumers’ aversion to intertemporal
substitution.

Two special cases of (3.7) are noteworthy:

e  When y = p, the precautionary saving and intertemporal substitution effects
cancel out. It is thus an unfortunate feature of standard isoelastic preferences
that they hide two fundamental determinants of equilibrium excess returns.

e When y =0 and p > 0, i.e., when consumers have no desire to smooth
consumption over states and do not engage in precautionary saving,'? excess
returns will generally be non-zero. There is nothing pathological about this:
Dreéze and Modigliani (1972) have taught us about the temporal dimension of
risk aversion. A zero aversion to atemporal risk (y = 0) does not imply a zero
risk premium as long as one is not indifferent to intertemporal substitution

® Our consumers, because they have risk preferences with constant relative risk aversion, do save for
precautionary motives and have decreasing absolute prudence.
10" Both the second and third derivatives of the risk utility function are zero when y = 0.
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(p > 0). It is, therefore, another unfortunate feature of standard isoelastic
preferences that they associate zero risk aversion to atemporal gambles with
zero aversion to intertemporal substitution and thus to zero risk premia: this
is simply not a general result.

Finally, notice that, unlike the excess return equation derived by Campbell (1993),
equation (3.7) does assign a role to the intertemporal elasticity of substitution in the
determination of equilibrium excess returns. This is because the covariances that
appear in (3.7) are covariances with consumption, in contrast with the covariances
in Campbell (1993) which are covariances with the market return. What happens
is that expressing excess returns as a function of covariances with market returns
“hides” the p coefficient into the covariance terms, since an implication of equation
(3.2) is that, for j > 1,

Sit1 Twi+j = PS/ 11 Xttj- (3.8)

Thus, one must exercise care when characterizing the role of aversion to intertem-
poral substitution in the determination of excess returns. From the equilibrium
perspective that we adopt in this paper, it is only natural that excess returns depend
on the elasticity of intertemporal substitution, as investors care about the temporal
properties of asset payoffs (do they help smooth consumption over time?).

3.5 THE EXCESS RETURN ON WEALTH

We now turn to the computation of the equilibrium excess return on wealth. From
(3.2),

(o)
Sett Pt = Sep1 X1 4 (1= )Sip1 Y8 x40 3.9)
j=1
As a consequence,

Owe = 0cc + (1 — p)ocn (3.10)
Owh = Ocn + (1 — p)onn (3.11)

Substituting into (3.7), we obtain the following formula for the equilibrium excess
return on wealth (up to a Jensen’s inequality term brought for clarity to the left-hand
side):

Eit1rwit1 = rfe1 + oww/2=Y[0cc + (1 — p)ocn] + (v — p)oen + (1 — p)onn].
(3.12)
When returns are i.i.d., all the terms involving 4 are zero, and the rate of return

on wealth is equal to yo.. regardless of whether the expected utility restriction
is satisfied: the excess return on the wealth portfolio is then determined solely
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12 FERNANDO RESTOY AND PHILIPPE WEIL

by risk aversion and the variance of consumption growth. This is not surprising,
as time—and thus the coefficient aversion to intertemporal substitution, p—is
essentially irrelevant in an i.i.d. world. As soon as we depart from the i.i.d. world,
however, the “wealth premium” depends on both aversion to risk and aversion to
intertemporal substitution.!!

Note that the rate of return on wealth is simply, from (2.1), the rate of return
on a claim to aggregate consumption—a concept that has, in general, little to do
empirically with the rate of return on the equity traded in the stock market.'”> We
will come back to this issue in section 6.

3.6 PRICES

One should note that the expression in (2.8) does not provide us with a formula
to compute the equilibrium excess return on an asset as a function of its payoff
structure, the consumption process and preferences. The reason is, of course, that
the endogenous return r; appears in the conditional second order moments on the
right-hand side of (2.8). To find such a bona fide asset pricing formula, we first
need to consider how the return on an asset depends on its price and the dividends
(payoffs) it distributes.

Let p;, denote the log of the (cum dividend) price-dividend ratio of asset i at
time #,13

and d; ; the log rate of growth of the dividends paid off by asset i between dates
tand t + 1. Then, by definition, the log return on asset i satisfies the identity:

Fii+1 = dis+1 + pi41 — log(eP™ —1). (3.13)

Following Campbell and Shiller (1988), we assume that the log dividend growth
process is stationary and use a Taylor expansion similar to the one applied above to
the budget constraint to find that

Fij1 X dij1 + Pl — %Pi,t — ki, (3.14)
4

where k; and d; (0 < 3; < 1) are two linearization constants. Since wealth is simply
an asset that distributes a dividend equal to per capita aggregate consumption, the
approximate budget constraint (2.5) is but a special case of (3.14) with d; ; = x;,

pir = —a;, 8 =38,and k; = k.
Now, it follows from (3.7) that, because of homoskedasticity, the expected rate
of return on asset i differs from the expected rate of return on wealth only by a

1" Similar results are noted in Weil (1989).

12 The two returns are however identical by construction in the Lucas (1978) or Mehra and Prescott
(1985) models.

13 That is, the log of the cum dividend price minus the log of the dividend.
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constant, call it 1;,,:
Tiw = E; Vi t+1 —E; Fw,t+1- (315)

Therefore, applying conditional expectations to both sides of (3.14), substituting
(3.15) into the resulting expression, and iterating (3.14) forward using the property
that bubbles are infeasible in this economy, we find that

piv = —(ki + i) +Et26[d,,+s Fuits]- (3.16)

8 s=1

The only term on the right-hand side of this expression that we do not yet know how
to compute from consumption data alone is 7;,,. Now notice that we can rewrite

Tiw =Eirigv1 —Erruwe1 = [Errigr — rf,t-i—l] — [Et rw41 — rf,t-i—l]-
We have already computed the equilibrium excess return of the wealth portfolio in
(3.12), so that the only task left is to characterize the excess return on individual

assets.
Notice that (3.16) implies

o
St piiyt = Sie1 )8 [dipst1 = Fuwsstal, (3.17)
s=1

so that, using (3.8),

[e.e]
Sit1 Pit+1 = Sit+1 Z Sf[di,t—}-s—&-l - wa,t+s+1]- (3.18)
s=1

Now, from (3.13),

St1 i1 = Set1dist1 + Set1 Pist1-
Therefore, from (3.18), we find that

(o.¢] o
St riurt =Sis1diip1 +Sir1 Y 8 dicerr — pSer1 Y X (3.19)
s=1 s=1

The interpretation of (3.19) is straightforward. Good news about the rate of return
on asset i can come from good news about tomorrow’s dividends or future dividends
(the first two terms on the right-hand side). Or they can come from news that future
consumption growth will be low (the third term on the right-hand side), since, by
(3.8), bad news about future consumption growth translate, in equilibrium, into
news that future returns will be low, and, therefore, into news that the present
discounted value of future dividends is high. The more averse the consumers are to
intertemporal substitution (the larger p), the more sensitive equilibrium returns are

TT0Z ‘ST Joquisaaq Uo sanbiijod SSoUs19S S8 SeUOIfeN UOIIepuo e /610 [eu.nolpiojxo jou//:0ny woly papeojumoq


http://rof.oxfordjournals.org/

14 FERNANDO RESTOY AND PHILIPPE WEIL

to changes in consumption growth, and the more bad news about future consumption
means good news for current returns.
Equation (3.19) immediately implies that

Oic = Od;c + Ofic — POh;c» (320)

Oih = Od;h + O fh — POhh, (3.21)

with the notation

o o.¢]
_ J _ J
Jirr1 = Eip E 5,~ di,z+j+1 and  h;,11 =Ei Z 3,- Xt4j4+1-
j=l1 j=l1

Thus, for instance, o5, measures the conditional covariance between expected dis-
counted future dividend growth of asset i and tomorrow’s consumption, while o,
measures the conditional covariance between two differently discounted expecta-
tions of future consumption.

Substituting (3.20) and (3.21) into (3.7), and collecting terms, we find that the
equilibrium excess return on any asset i is given by

Ei Fipt1 — Fpasl = —05/2 + Y0ae + (Y — 0)0an + Y0 fic
+ (v — p)osn — plyon,e + (Y — p)onn]. (3.22)

Equation (3.22) computes the equilibrium excess return on asset i solely as a func-
tion of the moments of this asset’s dividend growth process and of the consumption
growth process. The interpretation of (3.22) runs, of course, very much along the
lines of the interpretation of (3.7). We showed in (3.7) that there are three behav-
ioral determinants of excess returns: aversion to risk, prudence, and aversion to
intertemporal substitution. The excess return equation (3.22) simply shows that
each of these behavioral determinants applies to the each of the events, described in
(3.19), associated with good news about the return on asset i: news that tomorrow’s
dividends will be high, that future dividends will be high, or that future consumption
growth will be low.

To complete the computation of equilibrium prices, all that remains to be done
is to subtract from (3.22) the equilibrium excess return on wealth computed in
(3.12). This will yield the constant difference, 7;,,, between the rate of return on
asset i and the rate of return on wealth. Using the expression in (3.2) for the rate of
return on wealth, and substituting the just computed w;,, into (3.16), would yield
the (approximate) equilibrium price of any asset i as a function of consumption and
dividend data alone.'*

14 For the sake of brevity, we do not present the resulting formula.
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4. Equilibrium Returns: Heteroskedastic Consumption

Obtaining a closed-from solution for equation (2.11) when consumption follows a
general heteroskedastic process is not feasible (it requires computing conditional
moments of conditional moments of conditional moments etc.). We can however ex-
tend the results of the previous section to a relatively common heteroskedastic case
by assuming that log consumption growth follows a Gaussian GARCH process. '3
In particular, we will assume here the simple AR(1)-GARCH(1,1) specification:

Xip1 =a+bx; +uq 4.1)
U1 ™~ |1‘N(07 Gcc,t) 4.2)
Occ,t = O + alutz + 20cc,i—1 (4.3)

We will use three properties of GARCH processes that are established in Restoy
(1991).'¢ If two random variables have a joint normal conditional distribution whose
second order moments follow GARCH processes analogous to (4.3), then:

Property 1. Today’s conditional expectation of products of powers of tomorrow’s
conditional second order moments is a polynomial in today’s conditional second
order moments.

Property 2. Today’s conditional covariance between products of powers of tomor-
row’s conditional second order moments is a polynomial in today’s conditional
second order moments.

Property 3. Today’s conditional covariance between one of these random variables
tomorrow and product of powers of tomorrow’s conditional second order moments
is zero.

4.1 THE CONSUMPTION-WEALTH RATIO

Properties 1 and 2 immediately imply that the solution to (2.11) (i.e., the equilibrium
consumption wealth ratio) can be written as

8b o,

a=n—(1=p)r—x+ > gl (4.4)
j=1

where the constant n and the ¢; coefficients—which are, as we shall see below,

uninstructive and irrelevant for excess returns—can be computed as in Restoy

(1991).

15 Recent examples of using GARCH specifications to model the conditional variance of consumption
are Piazzesi (2001), Lettau and Ludvingson (2001), and Duffee (2005).
16 The straightforward proofs can be found there in Lemmas 1, 2, and 3.
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16 FERNANDO RESTOY AND PHILIPPE WEIL

To understand this equation, it is best to compare it with (2.11). The term in x;
on the right-hand side of (4.4) represents the expected present discounted value of
future consumption, which is just a linear function of current consumption growth
because of the AR(1) process followed by consumption growth. The polynomial in
the current conditional variance of consumption is present by virtue of Properties
1 and 2, which guarantee that the last term in (2.11) can be expressed in the form,
given in (4.4), of a weighted sum of powers of the current conditional variance of
consumption.

4.2 EXCESS RETURNS

Property 3 implies

)

J _

Cov; ri,t-i-l’g cjccc,t+l =0.
j=1

As a consequence, from (4.4) and (4.2),

db
1-38b

This is an important result because it embodies the fundamental insight that, for
our AR(1)-GARCH(1,1) process, returns are only able to predict future conditional
means of consumption growth but carry no information about the future conditional
variances. Therefore, the {; parameters are irrelevant when it comes to computing
excess returns, and the parameters of GARCH process do not matter for excess
returns! Indeed, substituting (4.5) into equation (2.8), one obtains

(p — Doic,s- (4.5)

Oja,t =

Oji db
Eiritv1 —rpee1 = ) + [Y + (v — P)m] Oic,t- (4.6)
Because of Properties 1 to 3, this expression is almost identical formally to the one
we would have obtained, in (3.7), for an AR(1) process with homoskedastic errors.
Because of the autoregressive nature of consumption growth, the only conditional
moment that matters for excess returns is the current conditional covariance between
asset returns and consumption. But the one crucial distinction is that excess returns
now vary over time, reflecting the time variation of the conditional variance of log
consumption growth.
While one might be tempted to conclude from (4.6) that this model is observa-
tionally equivalent to a standard CCAPM model with coefficient of relative risk
aversion (or inverse of the elasticity of intertemporal substitution)

Y =v+(y—p)db/(1 —3b),
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this would be mistaken. If y is small relative to p and consumption growth is highly
persistent, the implied y’ might well be negative, and the excess return on an asset
might be negative when the conditional covariance between that asset’s return and
consumption is positive.

A particular case is when the consumption growth rate is not persistent (b = 0),
but exhibits conditional heteroskedasticity of the GARCH form. From (4.6), that
assumption implies that the CCAPM’s excess returns expression holds. Similarly,
equations (2.7), (4.4) and Property 3 imply that the SCAPM also holds. This result
shows how i.i.d. consumption growth (as in Kocherlakota (1990)) is a sufficient but
not necessary distributional assumption to get observational equivalence between
SCAPM, CCAPM and the excess return expression associated to the model with
GIP preferences. Notice however that, even in this case, it is not true that elasticity
of intertemporal substitution is irrelevant to determine asset prices as long as it
affects the equilibrium rate of return on wealth.

5. Temporal Risk Aversion and the Term Structure of Real Interest Rates

The previous sections have highlighted in several instances the fact that risk neu-
trality towards timeless gambles does not imply that excess premia should be zero
for all assets regardless of their maturity. As we emphasized above, the latter pre-
sumption is valid only in the time- and state-additive expected utility case—for, in
that case, neutrality towards timeless risks coincides with indifference to the date
at which one consumes, and thus to the irrelevance of the time dimension of risk.
However, this coincidental result does not carry over to more general setups, and
there is no blanket presumption that equilibrium risk premia should be zero at all
maturities when consumers are neutral towards timeless risks—which confirms in
equilibrium the partial equilibrium analysis of Dréze and Modigliani (1972).

To highlight the role of temporal risk aversion, we now return to the homoskedas-
tic case!” and characterize the equilibrium term structure of real bond returns under
the assumption that the log consumption growth process follows an homoskedastic,
AR(1) process:

Xip1 = a+bx; +€c 41, (5.1)
€c,t+1 7 IZN(Oa o—cc)- (52)

We consider pure discount bonds maturing j > 1 periods from now, i.e., riskfree
claims that promise to pay one unit of the consumption good in every state of nature
Jj periods from now. Let R,(j) denote the gross one-period return at time # on a bond

17" Computations are more tedious, but the results not more instructive, in the heteroskedastic case.
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of maturity ;.3 It is straightforward to show that R,(j) must satisfy the following
Euler equation:

. 187" H X5 H RS IR =1. (53)

Similarly, the return on a J—perlod rollmg over short strategy must satisty

E, BJGHXt+kHth+k1_[Rt+k(l) =1. (5.4)

In the appendix we show that, under the same joint lognormality assumption we
used above, the Euler equation corresponding to the j-period bond can be written as.

ri(j) = —logh + pS(a. b, j) + pT (b, j)xi

L (o—va -y ?
+E{W—A(b )|:p+—8b:| }OCC7 (55)

where

o loa [ 1-b
Sa,b, j)= - j—b :

i1—b 1—b

b1— b
Tby.E_ ’
(. ) i1-0b

11— pi—k
A(b, j) = yo—2 |,
.J) ng—zﬂ[ 1—b]

Equation (5.5) allows us to draw (approximate) yield curves for pure discount bonds.
In this homoskedastic world, those yield curves would be flat if consumption is
i.i.d. (b = 0) and/or agents have an infinite elasticity of intertemporal substitution
(p=0).

In the appendix we also show that the rolling over short strategy yields a return
which can be written as the return on a j- period bond plus a term premium. This
term premium has the form:

TP(j) = pb[ ]A(b J=DG =1

2 -3

j—1 2

—p 1 —bk
b’ . 5.6
Bb]; 1 — b2 (5:6)

+pb[

18 The one-period rate of return at ¢ on a bond maturing at t + 1, R,(1), is simply what we called
earlier Ry 4.
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The term premium is a complex function of the persistence parameter b and the
preference parameters y and p. Under the standard time-additive expected utility
preferences, the term premium is zero if agents are risk neutral—because zero
risk aversion is then associated with zero aversion to intertemporal substitution
(y = p = 0). In general, however, a zero coefficient of relative risk aversion for
timeless gambles does not imply a zero term premium. By contrast, if agents have
an infinite elasticity of intertemporal substitution (p = 0), the term premium is zero
in equilibrium regardless of the value of the coefficient y: when consumers do not
care when they consume, the rate of return on a long bond and on the corresponding
rolling over short strategy must be identical. Finally, note that the term premium is,
of course, always zero if consumption is i.i.d.

6. An empirical analysis of equilibrium returns

The previous sections suggest that our approximate equilibrium asset pricing ap-
proach section is well-suited to derive simple stochastic relations between security
returns and fundamentals. We now show how to apply it empirically to the com-
putation of equilibrium stock market returns, before turning to the discussion of
related work.

6.1 EQUILIBRIUM STOCK MARKET RETURNS

If, as is often assumed, the stock market reduced to a claim on aggregate future
consumption and could thus be identified as the wealth portfolio, equation (3.2)
would enable us to approximate equilibrium equity returns r, by the expression

0
Tettl = Vw1 = U+ PXi4 + (I —=p)Si41 Z5jxt+j+l, (6.1)
j=0

In a simple Lucas-type general equilibrium setting, x would represent (the growth
rate of) consumption or output.

In the more general, and more realistic, case in which other components of
aggregate wealth—such as human capital—force us to distinguish conceptually
equity from the wealth portfolio, section 3.5 tells us how to compute (approximately)
the rate of return on the stock market as a claim on future aggregate dividends. By
combining equations (3.19), (3.15) and (3.2), we find:

o0 o0
Feit1 = U + Ty + Siy1 Z 8 de,t4s+1 + PXi41 — PSi41 Z 8 Xips+1, (6.2)
5s=0 s=0
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where 1., is a constant defined as in equation (3.15), and d, denotes the growth
rate of the aggregate dividends corresponding to the securities included in the
stock-market index. If d, = x, i.e., if the dividends we are pricing are aggregate
consumption, 7., = 0 and equation (6.2) reduces to (6.1).

In order to get an idea of how restrictive it is in practice to assume that the
stock market is an accurate proxy of the economy’s wealth, we can thus compare
the empirical predictions of expressions (6.1) and (6.2) and confront them with
observed stock market returns.

However, to run this empirical experiment we must first generate surprises for
future expected discounted values of x and d. To that effect, we follow Campbell
(1991) and specify a VAR model for a set of variables of interest. Define Z as a 4-
component vector composed of the real stock return, the growth rate of consumption
(or output), the growth rate of dividends, and a (detrended) short term real interest
rates. The vector Z is assumed to follow the first-order VAR process:

ZI-H =o+ AZ, + Ws41. (63)

Now observe that the vector of surprises to future discounted values of Z is given
by the vector &, with

o0 o
Er+1 = Sr+1 ZBszJrHj = Z BjAj(l)tH = - BA)_l Wr41- (6.4)
j=0 j=0

The second and third components of vector £ correspond to surprises on future
expected discounted values of x and d, respectively. After those surprise terms are
generated by estimating of the VAR model, we can make use of the equilibrium
expressions (6.1) and (6.2) to derive, for each value of p, the theoretical equity
returns (up to a constant), and to compare them with actual data. In order to consider
partial as well as general equilibrium interpretations of our model, we calculate x
in expression (6.1) using either consumption or output data (since consumption
ought to equal output in the Lucas general equilibrium model). Hence we obtain
three series of equilibrium returns for each value of the elasticity of intertemporal
substitution:

e Consumption model: a series pricing a claim to future consumption which
is derived from expression (6.1) with x taken as consumption, as theory
suggests it should be.

*  Qutput model: a series pricing a claim to future output which is derived from
expression (6.1) with x being measured as output.

* Dividend model: a series pricing a claim to future aggregate dividends d
which is derived from expression (6.2), with x being consumption.

TT0Z ‘ST Joquisaaq Uo sanbiijod SSoUs19S S8 SeUOIfeN UOIIepuo e /610 [eu.nolpiojxo jou//:0ny woly papeojumoq


http://rof.oxfordjournals.org/

APPROXIMATE ASSET PRICES 21

Table I. Correlation between observed and equilibrium returns'®

Model Inverse of elasticity of intertemp. substitution (p)

5 1 2 3 4 6 8
Consumption (r, = ry,) 28 .00 —.29 —.38 —.42 —.46 —.48
Output (re = ry) 15 —.13 -32 -.37 -39 —41 —42
Dividends (r, # ry) .53 49 40 31 22 .06 —.06

To keep the VAR structure simple, we use annual data?” corresponding to the second
half of the previous century. This frequency seems also more appropriate since it
could be expected that a pure equilibrium analysis would normally have little power
to explain very short-run fluctuations in asset prices.

Table I presents the correlation of each of the three series of generated returns
with observed US stock returns for a wide range of parameter values. Notice that
given the large measurement problems that the procedure involves—particularly
regarding the computation of the expectational terms in the equilibrium
expressions—we should not expect very high correlations even if the model were
a good description of reality. Still, some of the results are striking. First, the per-
formance of both the consumption and the output models is extremely poor—even
accounting for measurement problems—for all values of p above 1, as the correla-
tion between theoretical and observed returns is virtually zero or negative in those
cases. This is important because available empirical exercises tend to yield esti-
mates of p, the inverse of the elasticity of substitution, somewhere between 1 and
4 (see e.g. Epstein and Zin, 1991). Second, although returns generated by the divi-
dend model do not show a strong association with observed returns, the correlation
is always above the ones obtained with the other two models, only gets negative
for values of p of 8 or more and is around .5 when p is in the neighborhood
of 1.

An empirical explanation of the relative performance of the models considered
is relatively straightforward. As it has been often reported (see e.g. Estrella and
Mishkin, 1998), equity prices contain some leading information on future eco-
nomic activity and firms’ profits. This translates into a positive covariance of
current returns with news on future consumption, output and dividends. By looking
at expression (6.1), good news on future consumption (or output) has two opposite
effects on the return on the equilibrium portfolio. First, it increases the expected

19 Equilibrium returns are generated according to expression (6.1), for the consumption and output
models, and (6.2) for the dividends model. Data sources are described in the text.

20 US data from 1954 to 2000. Aggregate (value-weighted) stock market returns and dividends are
obtained from CRSP tapes; consumption (non-durable and services), output (GDP), interest rates
and inflation (calculated with consumption deflators) are obtained from OECD’s main economic
indicators.
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future payoff. Second, it increases the expected discount factor to be applied to
any future payoff. If the coefficient p is sufficiently large, the latter predominates
thereby generating a negative covariance between current equilibrium returns and
news on future consumption that translates into a negative correlation between
theoretical and observed returns. In other words, the exercise shows that for em-
pirically plausible values of p, identifying the stock market with the economy’s
wealth would imply a counterfactual equilibrium relation between equity prices
and future economic activity. If the stock market is not deemed a claim on future
consumption or output, as in (6.2), the payoff and the discounted factor effects are
disconnected with each other. Still, even if returns are positively correlated with
changes in expectations about future dividends, the discount factor effect implies
that the correlation between observed and equilibrium returns decreases when p
increases. But if, at is the case in the sample, the association between returns and
future expected dividends is sufficiently high, it is still possible to find a reasonable
correlation between model-generated returns and actual data. In any case, the evi-
dence gathered here points to the difficulty of reconciling empirically the standard
intertemporal asset pricing models with the common but restrictive assumption that
the stock market can proxy for the aggregate wealth portfolio.

6.2 RELATED EMPIRICAL WORK

The approximate equilibrium methodology has already been used in several papers
to carry out various empirical exercises.

For example, Rodriguez et al. (2006) use expression (6.1) and the corresponding
VAR model to test whether macroeconomic fundamentals can explain both the
volatility and predictability of asset returns in eight OECD countries. Although
they generally obtain mixed results, they find favorable evidence for the model in
the case of the US when annual data are employed.

Dumas et al. (2003), building on this paper, consider an open economy general
equilibrium model in which a country’s aggregate dividends are assumed equal to
this country’s output. They test whether the distribution of national stock market
returns can be explained by a single international discount factor model—such as
the last term in the righthand side of equation (6.2)—depending on world output.
Although Dumas et al. (2003) reject the hypothesis of market integration, Restoy
and Rodriguez (2006) find that the evidence is more favorable to this hypothesis if
a partial rather than a general equilibrium approach is employed.

Finally, Ayuso and Restoy (2006) extend the analysis in this paper to a two-
good setting (consumption and housing services) and derive an approximate equilib-
rium relation between house prices and rents. They find that house price dynamics
can be reasonably well represented in the US, the UK and Spain by a partial
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adjustment model in which house prices slowly adjust to the approximate equilib-
rium path.

7. Conclusion

We have shown in this paper that the equilibrium capital asset pricing model
that emerges from Kreps-Porteus GIP preferences can be written—both in the
case of homoskedastic and in the case of AR(1)-GARCH(1,1) consumption—as a
generalized CCAPM in which both aversion to risk and to intertemporal substitution
matter for excess returns. This generalized CCAPM features, relative to the standard
CCAPM, an extra term that captures the effects on excess returns of a possible
correlation between an asset return and news about future consumption, and that
reflects the interaction between precautionary saving and consumption smoothing.
Because of the presence of this extra term, the predictions of this generalized
CCAPM can be quite different from and richer than those of the standard CCAPM.
For instance, the equilibrium excess return on an asset whose return is positively
correlated with consumption might well be negative.

A second contribution is that we have derived approximate equilibrium asset
pricing formulas that can be used to price explicitly any asset solely as a function
of its dividend process and of consumption. In particular, these formulas make it
possible to compute, albeit approximately, equity returns—as distinct from the rate
of return of a claim to aggregate consumption that is computed in most of the asset
pricing literature- and the otherwise unobservable rate of return on wealth from
consumption data alone. This method can be applied empirically to characterize
the true implications of the SCAPM when the rate of return on wealth is inferred
from consumption data instead of being measured as the rate of return on the
stock market. Our empirical exploration suggests that stock market returns and
model-based equilibrium returns on wealth behave rather differently.

Third, our paper clarifies the often forgotten role of temporal risk aversion for
equilibrium asset prices: excess returns are in general not zero, and the yield curve
for real bond returns is not flat, when the consumers are neutral towards timeless
risks.

Finally, this paper should be viewed as our contribution to a branch of literature?!
that attempts, through approximations, to provide an analytic understanding of the
workings of models that usually must be solved numerically. This approach makes
it possible to unify theoretical results and numerical insights.

21 See, for instance, Kimball (1995) or Campbell (1994).
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Appendix: Computing the return on a j-period bond and the j-period term
premium

Using the lognormality assumption, we can write

J J
Jre(j) = —j0logB + pOE, > xx — (0 — DE, Y ru i

k=1 k=1
1 2 d 2 d
5 |:p9 Var, (Z xt+k> + (6 — 1) Var, (Z rw,t+k>
k=1 k=1
J J
+2p(6 — 1) Cov,; (Z Xiths er,m{)} : (A1)
k=1 k=1

Similarly, under the lognormality assumption, equations (A1) and (5.4) yields

j—1
Y Birep(1) = jri(j) + TP(j),

k=0
where
1 Jj—1 j—1 j
TP(j) = 5 Vaty | 3 rie(1) | +00Covp | 3 ria(1), DX
k=0 k=0 k=1
Jj—1 J
—©O—=1Cov, | Y riwk(1), ) rustk (A2)
k=0 k=1

is the j-period term premium.
For the homoskedastic AR(1) process given in (5.1), (3.2) and (3.3) specialize to

l1—p
Fwt4l = U+ pXr41 + ——Sep1 X141, (A3)
1—38b
where
(1 —pP? 1

u=—logp — (A4)

2 (1R’
Equation (A4) implies that

l—p
Tw,t+j — E; Twit+j = (p + m) (Xr+j —E; Xz+j)- (A5)
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Therefore,
J J
B ) ruark =uj + 0B ) xep, (A6)
k=1 k=1
J 1 —p
Var, (Z rw,t+k> = (p + —) Var, (Z xt+k> (A7)
k=1
Cov, (Z Xt+ks ;rw,wk) = (p + m) Var; (Z xt+k> (A3)
Now,
J J
E ) xie =E ) [a(l+b+ -+ 571 + bx]
= k=1
= JjlS(a, b, j)+ T (D, j)xl, (A9)
where

sab =l o [; 1= & T b1—bi
s Uy = - - an ) = - .
e ) =590

When consumption growth is i.i.d. (b = 0), S(a, 0, j) = a and T(0, j) = 0, while
for one-period bonds (j = 1), S(a, b, 1) =a and T (b, 1) = b.

Moreover,
J j-1
Var, (Zw) ZVarf(mezZ > Covilrit xiq). (A10)
k=1 k=1 I=k+1
But
k—1 1 — b2k
Var, (x,x) = Var, [ b*x, + gbsec,t s = Ty O | (Al1)
and, for [ > k,

I—k—1
Covi(X4k, X141) = Cov; <xt+k’ xt+k Z b €c 1+1— s)

= b'F Var,(x,11)
e l— b2’<

= pl=
1—192

(A12)
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Therefore,
/ /- p2 U 1—b
Var, (Z xt+k) Z s Occ +2 Z Z bl_kl—bzccc
k=1 k=1 k=1 I=k+1
J 1 — Jj— bzk J
= Z 1— b2 Occ + Z Z bl_kccc
k=1 k=1 I=k+1
[A(b, j)oce, (A13)
where
J 2k j—k
A, j) E}g: —b [1+2b%].

When consumption growth isi.i.d. (b = 0), A(0, j) = 1, while for one-period bonds
(G=0D,A0,1)=1.

Substituting (A7), (A8), (A9), (A10) and (A14) into the Euler equation for j-
period bonds (A1), using (A5) and rearranging, one obtains

r1(j) = —logP + pS(a, b, j) + pT (b, j)x:

L= - y—r7
+E{W A, )[p+—8b”om (AL4)

which is the expression for the return on a j-period bond given in (5.5).
Now, from equation (5.5) the return on a 1-period bond is

ri(1) = —logP + pa + pbx; + M,

2 (1 — 3b)? 1—8b
Then, from equations (A3), (A9), and (A16) the j-period term premium can be
written as

where

1 1
TP(j) = pb {—zpb +p0—(0—1) <p+ —)}Var, ka

1 .
+pb{p6—(6— 1) (p+ —Bb)}Covt Xt ) th+k . (A15)
k=1
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Then, using equations (A13) and (A14) and rearranging,

y

TP(j) = pb[ ]A(b J=DG =1

—8b

1=
+pb[ I_Sb}ZJ T (A16)

which coincides with expression (5.6) in the text.
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